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Abstract 27 

Satellite XCO2 retrievals could help to improve carbon flux estimation because of 28 

their good spatial coverage. In this study, to assimilate the GOSAT XCO2 retrievals, 29 

the Global Carbon Assimilation System (GCAS) is upgraded with new assimilation 30 

algorithms, procedures and a localization scheme, a higher assimilation parameter 31 

resolution and so on, and hence is named as GCASv2. Based on this new system, the 32 

global terrestrial ecosystem (BIO) and ocean (OCN) carbon fluxes from May 1, 2009 33 

to Dec 31, 2015 are constrained using the GOSAT ACOS XCO2 retrievals (Version 7.3). 34 

The posterior carbon fluxes from 2010 to 2015 are independently evaluated using CO2 35 

observations from 52 surface flask sites. The results show that the posterior carbon 36 

fluxes could significantly improve the modeling of atmospheric CO2 concentrations, 37 

with global mean BIAS decreases from a prior value of 1.6±1.8 ppm to -0.5±1.8 ppm. 38 

Globally, the mean annual BIO and OCN carbon sinks and their interannual variations 39 

inferred in this study are very close to the estimates of CT2017 during the study period, 40 

and the inferred mean atmospheric CO2 growth rate and its interannual changes are also 41 

very close to the observations. Regionally, over the northern lands, there are the 42 

strongest carbon sinks in North America Temperate, followed by Europe, Boreal Asia, 43 

and Temperate Asia; and in tropics, there are strong sinks in Tropical South America 44 

and Tropical Asia, but a very weak sink in Africa. This pattern is significantly different 45 

from the estimates of CT2017, but the estimated carbon sinks in each continent and 46 

some key regions like Boreal Asia and Amazon are comparable or in the range of 47 

previous bottom-up estimates. The inversion also changes the interannual variations of 48 

carbon fluxes in most TRANSCOM land regions, which have a better relationship with 49 

the changes of severe drought area or LAI, or are more consistent with previous 50 

estimates for the impact of drought. These results suggest that the GCASv2 system 51 

works well with the GOSAT XCO2 retrievals, and has a good performance in estimating 52 

the surface carbon fluxes, meanwhile, our results also indicate that the GOSAT XCO2 53 

retrievals could help to better understand the interannual variations of regional carbon 54 

fluxes. 55 
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1. Introduction 56 

Atmospheric carbon dioxide (CO2) is one of the most important greenhouse gases, 57 

and fossil fuel burning and land use change are mostly responsible for its increase from 58 

the preindustrial concentration. Terrestrial ecosystems and oceans play very important 59 

roles in regulating the atmospheric CO2 concentration. In the past half century, about 60 

60% of the anthropogenic CO2 emissions have been absorbed by the terrestrial 61 

ecosystems and oceans (IPCC, 2014). However, their carbon uptakes have significant 62 

spatial differences and inter-annual variations. Therefore, it is very important to 63 

quantify the global and regional carbon fluxes.  64 

Atmospheric inversion is an effective method for estimating the surface CO2 fluxes 65 

using the globally distributed atmospheric CO2 concentration observations (Enting and 66 

Newsam, 1990; Gurney et al., 2002). It has robust performance on global or hemisphere 67 

scale carbon budget estimates (Houweling et al., 2015), but on regional scales, due to 68 

the uneven distribution of in situ observations, the reliability of inversion results varies 69 

greatly in different regions. Generally, the inversions have large uncertainties in tropics, 70 

southern hemisphere oceans and most continental interiors such as South America, 71 

Africa, and Boreal Asia (Peylin el al., 2013). Satellite observation has a better spatial 72 

coverage, especially over remote regions, and studies show that it can be used to 73 

improve the carbon flux estimates (e.g., Chevallier et al., 2007; Miller et al., 2007; 74 

Hungershoefer et al., 2010). The Greenhouse Gases Observing Satellite (GOSAT) 75 

(Kuze et al., 2009), being the first satellite mission dedicated to observing CO2 from 76 

space, was launched in 2009. Many inversions have utilized the GOSAT retrievals for 77 

column-averaged dry air mole fractions of CO2 (XCO2) to infer surface carbon fluxes 78 

(e.g., Basu et al., 2013; Maksyutov et al., 2013; Saeki et al., 2013a; Chevallier et al., 79 

2014; Deng et al., 2014; Deng et al, 2016; Wang et al., 2018; Wang et al., 2019). Takagi 80 

et al. (2011) found that GOSAT XCO2 retrievals could significantly reduce the 81 

uncertainties in estimates of surface CO2 fluxes for regions in Africa, South America, 82 

and Asia, where the sparsity of the surface monitoring sites is most evident. Basu et al. 83 

(2013) shown that assimilating only GOSAT data can well reproduce the observed CO2 84 

https://doi.org/10.5194/acp-2020-421
Preprint. Discussion started: 26 August 2020
c© Author(s) 2020. CC BY 4.0 License.



4 

 

time series at the surface and TCCON sites in the tropics and the northern extra-tropics, 85 

but enhance seasonal cycle amplitudes in the southern extra-tropics. Wang et al. (2019) 86 

also showed that GOSAT XCO2 retrievals can effectively improve carbon flux 87 

estimation, and the performance of the inversion with GOSAT data only was 88 

comparable with the one using in situ observations. Meanwhile, based on the inversions 89 

with GOSAT XCO2 retrievals, Liu et al. (2018) quantified the impacts of the 2011 and 90 

2012 droughts on terrestrial ecosystem carbon uptake anomalies over the contiguous 91 

US, Deng et al. (2016) compared the distributions of drought and posterior carbon 92 

fluxes in South America for 2010-2012, Detmers et al. (2015) studied the impact of the 93 

strong La Niña episode on the carbon fluxes in Australia from the end of 2010 to early 94 

2012. However, so far, on the one hand, most studies focused on the impact of GOAST 95 

XCO2 retrievals on the inversion of surface carbon fluxes, but in many regions, there 96 

are still large divergences for carbon sinks between different inversions with the same 97 

GOSAT data or between inversions with GOSAT and in situ observations (Chevallier 98 

et al., 2014), on the other hand, although some studies reported the impact of drought 99 

or extreme wetness on the changes of carbon fluxes using inversions based on GOSAT, 100 

few studies have comprehensively investigated the impacts of GOSAT data on the 101 

interannual variations of inverted land sinks in different regions. 102 

In this study, we present a 6-year inversion from 2010 to 2015 for the global and 103 

regional carbon fluxes using only the GOSAT XCO2 retrievals. The Global Carbon 104 

Assimilation System (GCAS) is employed to conduct this inversion, which was 105 

developed in China in 2015 (Zhang et al., 2015) and updated in this study with a new 106 

scheme to assimilate XCO2 retrievals. The inverted multi-year averaged carbon fluxes 107 

for the globe, global land and ocean, each TRANSCOM region as well as some key 108 

areas are shown and compared with previous top-down and bottom-up (Jiang et al., 109 

2016) estimates. The estimated interannual variations of carbon fluxes in each 110 

TRANSCOM region are given and discussed against changes in drought and LAI. This 111 

manuscript is organized as follows: Section 2 details the GCASv2 system as well as the 112 

prior fluxes, GOSAT retrievals and uncertainty settings. Section 3 briefly introduces the 113 
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experimental design. Results and discussions are presented in Section 4, and 114 

Conclusions are given in Section 5. 115 

2. Method and Data 116 

2.1 A new version of the Global Carbon Assimilation System (GCASv2) 117 

 Figure 1 shows the flow chart of the GCASv2 system. In each data assimilation 118 

(DA) window, there are two steps. The first step, the prior fluxes of 𝑋𝑏 are perturbed 119 

with a Gaussian random distribution, and put into the global atmospheric chemical 120 

transport model MOZART-4 to simulate CO2 concentrations, which are then sampled 121 

according to the locations and times of CO2 observations. The sampled data are used in 122 

the assimilation module together with the CO2 observations to generate the optimized 123 

fluxes of 𝑋𝑎 . In the second step, the MOZART-4 model is run again using the 124 

optimized fluxes of 𝑋𝑎, to generate new CO2 concentrations for the initial field of the 125 

next DA window. This DA flow chart is different from the previous version of GCAS, 126 

which runs the MOZART-4 model only once, and optimizes the fluxes and the initial 127 

field of the next window synchronously. In this study, we find the synchronous dual 128 

optimizations will weaken the assimilation benefits on fluxes.  129 

 The perturbation of 𝑋𝑏  represents the uncertainty of the prior carbon flux, which 130 

is calculated using the following function. 131 

𝑿𝒊
𝒃 = 𝑿𝟎

𝒃 + λ × δ𝑖 × 𝑿𝟎
𝒃 , i = 1, 2, ... , N      (1) 132 

where 𝛿𝑖  represents random perturbation samples, which is drawn from Gaussian 133 

distributions with mean zero and standard deviation of one. N is the ensemble size. λ is 134 

a set of scaling factors, which represents the uncertainty of each prior flux. In previous 135 

version GCAS, λ is defined in different land and ocean areas based on 22 TRANSCOM 136 

regions (Gurney et al., 2002) and 19 Olson ecosystem types, as in CarbonTracker 137 

(Peters et al., 2007). This means that in the same area, the error of a prior flux is the 138 

same. Through assimilation, the flux will be integrally enlarged or reduced. In GCASv2, 139 

we change to use a λ in each grid, meaning that for each grid, the perturbations of prior 140 

fluxes are independent. In addition, the grid cell of λ is different from those of the prior 141 

flux and the transport model, which could be set freely. 142 
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 Generally, there are 4 types of carbon fluxes, namely terrestrial ecosystem (BIO) 143 

carbon flux, atmosphere and ocean (OCN) carbon exchange, fossil fuel (FOSSIL) 144 

carbon emission and biomass burning (FIRE) carbon emission, which are used to drive 145 

the transport model to simulate the atmospheric CO2 concentration. And in general, 146 

FOSSIL and FIRE fluxes are assumed to have no errors, only BIO and OCN fluxes are 147 

optimized in an assimilation system (e.g., Peters, et al., 2007; Jiang et al., 2013; Wang 148 

et al., 2019). In GCASv1, only the BIO flux was optimized, the OCN flux was directly 149 

from the output of CarbonTraker (CT). In GCASv2, it is set to be an optional item. Four 150 

schemes are set (Functions 2 - 5). The first one is the same as the previous version, only 151 

the BIO flux is optimized; the second one is the same as general, namely both BIO and 152 

OCN fluxes are optimized; the third one is that BIO, OCN and FOSSIL fluxes are 153 

optimized at the same time; and the fourth one is that only net flux is optimized.  154 

𝑿𝒊
𝒃 = (𝑿𝒃𝒊𝒐

𝒃 + 𝜆𝑏𝑖𝑜 × δ𝑖,𝑏𝑖𝑜 × 𝑿𝒃𝒊𝒐
𝒃 ) + 𝑿𝒐𝒄𝒏

𝒃 +𝑿𝒇𝒐𝒔𝒔𝒊𝒍
𝒃 +𝑿𝒇𝒊𝒓𝒆

𝒃 , i = 1, 2, ... , N   (2) 155 

𝑿𝒊
𝒃 = (𝑿𝒃𝒊𝒐

𝒃 + 𝜆𝑏𝑖𝑜 × δ𝑖,𝑏𝑖𝑜 × 𝑿𝒃𝒊𝒐
𝒃 ) + (𝑿𝒐𝒄𝒏

𝒃 +𝜆𝑜𝑐𝑛 × δ𝑖,𝑜𝑐𝑛 × 𝑿𝒐𝒄𝒏
𝒃 )           156 

+𝑿𝒇𝒐𝒔𝒔𝒊𝒍
𝒃 +𝑿𝒇𝒊𝒓𝒆

𝒃 , i = 1, 2, ... , N  (3) 157 

𝑿𝒊
𝒃 = (𝑿𝒃𝒊𝒐

𝒃 + 𝜆𝑏𝑖𝑜 × δ𝑖,𝑏𝑖𝑜 × 𝑿𝒃𝒊𝒐
𝒃 ) + (𝑿𝒐𝒄𝒏

𝒃 +𝜆𝑜𝑐𝑛 × δ𝑖,𝑜𝑐𝑛 × 𝑿𝒐𝒄𝒏
𝒃 )           158 

+(𝑿𝒇𝒐𝒔𝒔𝒊𝒍
𝒃 +𝜆𝑓𝑜𝑠𝑠𝑖𝑙 × δ𝑖,𝑓𝑜𝑠𝑠𝑖𝑙 × 𝑿𝒇𝒐𝒔𝒔𝒊𝒍

𝒃 )+𝑿𝒇𝒊𝒓𝒆
𝒃 , i = 1, 2, ... , N  (4) 159 

𝑿𝒊
𝒃 = (𝑿𝒃𝒊𝒐

𝒃 + 𝑿𝒐𝒄𝒏
𝒃 +𝑿𝒇𝒐𝒔𝒔𝒊𝒍

𝒃 +𝑿𝒇𝒊𝒓𝒆
𝒃 ) + 𝜆𝑛𝑒𝑡𝑓𝑙𝑢𝑥 × δ𝑖,𝑛𝑒𝑡𝑓𝑙𝑢𝑥 × (𝑿𝒃𝒊𝒐

𝒃 +         160 

𝑿𝒐𝒄𝒏
𝒃 +𝑿𝒇𝒐𝒔𝒔𝒊𝒍

𝒃 +𝑿𝒇𝒊𝒓𝒆
𝒃 ), i = 1, 2, ... , N  (5) 161 

 162 
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 163 

Figure 1. Flow chart of the GCASv2 system 164 

2.1.1 EnSRF assimilation algorithm 165 

To avoid storing and inverting very large matrices during analysis, the Ensemble 166 

square root filter (EnSRF) algorithm, introduced by Whitaker and Hamill (2002), is 167 

used to constrain the carbon fluxes in this version. EnSRF obviates the need to perturb 168 

the observations in contrast to the traditional EnKF algorithm and assimilates 169 

observations in a sequential way. It has a better performance than the method to 170 

assimilate observations simultaneously as long as the observation errors are 171 

uncorrelated (Houtekamer and Mitchell, 2001). The implementation process and setup 172 

are detailed below. 173 

After obtaining an ensemble of state vectors as described in Section 2.1, ensemble 174 

runs of MOZART-4 are conducted to propagate these errors in the model with each 175 

ensemble sample of a state vector. The background error covariance 𝑷𝒃 is calculated 176 

based on the forecast ensemble from Eq. (6): 177 

𝑷𝒃 =
1

𝑛−1
∑ (𝑿𝒊

𝒃 − 𝑿̅𝒃)𝑛
𝑖=1 (𝑿𝒊

𝒃 − 𝑿̅𝒃)𝑇                (6) 178 

MOZART-4

CO2 Obs.

t0 t1 t2 t3

DA window DA window

EnSRF

CO2 initial 

field

CO2 initial field of 

each window

Processes before assimilation Processes after assimilation

CO2 Sim.

MOZART-4

EnSRF

CO2 Sim.

CO2 Obs.

DA window

𝑿 𝑿 

𝑿 𝑿 
𝑿𝒃 𝑿𝒃 𝑿𝒃
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where 𝑿̅𝒃  represents the mean of the ensemble samples. Based on the background 179 

error covariance, the response of the uncertainty in the simulated concentrations to the 180 

uncertainty in emissions is obtained. Combing observational vector y, the state vector 181 

is updated according to the following formulations: 182 

𝑿 = 𝑿𝒃 + 𝐊(𝐲 − 𝑯𝑿𝒃)                    (7) 183 

 𝐊 = 𝑷𝒃𝑯𝑇(𝑯𝑷𝒃𝑯𝑇 + 𝑹)−1  (8) 184 

 δ𝑿𝒊
 = δ𝑿𝒊

𝒃 − 𝑲̃𝑯δ𝑿𝒊
𝒃  (9) 185 

While employing sequential assimilation and independent observations 186 

 𝑲̃ = (1 + √𝑹 𝑯𝑷𝒃𝑯𝑇 + 𝑹⁄ )−1𝐊  (10) 187 

where H is the observation operator that maps the state variable from model space to 188 

observation space. K is the Kalman gain matrix of ensemble mean depending on 189 

background and observation error covariance R, representing the relative contributions 190 

to analysis. 𝑲̃ is the Kalman gain matrix of ensemble perturbation, and then emission 191 

perturbations after inversion δ𝑿𝑖
  can be calculated. At the analysis step, the ensemble 192 

mean 𝑿  is taken as the best estimate of the carbon flux. 193 

To reduce the computational cost and the influence of representative errors, a 194 

‘super-observation’ approach is adopted based on the optimal estimation theory 195 

(Miyazaki et al., 2012). A super-observation is generated by averaging all observations 196 

located within the same model grid within a DA window. We assume that the 197 

observation errors of different stations at different times are independent of each other. 198 

The standard deviation of the jth observation 𝑦𝑗 is 𝑟𝑗. The super-observation 𝑦𝑛𝑒𝑤, 199 

standard deviation 𝑟𝑛𝑒𝑤  and corresponding simulations 𝑥𝑛𝑒𝑤,𝑖  from one perturbed 200 

prior flux 𝑋𝑖
𝑏 are calculated: 201 

 1
𝑟𝑛𝑒𝑤2
⁄ = ∑ 1

𝑟𝑗
2⁄

𝑚
𝑗=1  (7) 202 
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  𝑦𝑛𝑒𝑤 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑦𝑗 ∑ 𝑤𝑗

𝑚
𝑗=1⁄  (8) 203 

  𝑥𝑛𝑒𝑤,𝑖 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑥𝑗,𝑖 ∑ 𝑤𝑗

𝑚
𝑗=1⁄  (9) 204 

where 𝑤𝑗 =
1
𝑟𝑗
2⁄  is the weighting factor; m is the number of observations within a 205 

super-observation grid. The super-observation error decreases as the number of 206 

observations used for the super-observation increases.  207 

2.1.2 Atmospheric transport model 208 

Same as the GCAS system (Zhang et al., 2015), the global chemical transport 209 

Model for OZone And Related chemical Tracers (MOZART-4; Emmons et al., 2010) is 210 

adopted as the atmospheric transport model in GCASv2. MOZART-4 is a flexible 211 

model, it can be run at essentially any resolution, and can be driven by essentially any 212 

meteorological data set and with any emission inventories (Emmons et al., 2010). In 213 

this system, we preset two horizontal resolutions for MOZART runs, one being 214 

approximately 2.8°×2.8°, with model grids of 128 × 64, and another being 215 

approximately 1.0°×1.0°, with model grids of 360 × 180. In the vertical direction, we 216 

use 28 layers. The ERA-Interim reanalysis datasets from the European Centre for 217 

Medium-Range Weather Forecasts (ECMWF) are used to drive the model. ERA-218 

Interim data set includes as many as 128 meteorological variables, and has the highest 219 

spatial resolution of approximately 80 km (T255 spectral) on 60 vertical levels from 220 

the surface up to 0.1 hPa. Only the variables required for MOZART-4 with a spatial 221 

resolution of 1.0°×1.0°, and 28 vertical levels for 3-D variables from the surface to 222 

approximately 2.5 hPa are selected in this system. The selected variables and vertical 223 

levels are shown in Table S1 and S2 in the supporting information. 224 

2.1.3 DA window and localization 225 

 The DA window is set to one week in GCASv2, which is the same as before. 226 

Theoretically, a longer DA window is better, because CO2 is a stable species. The longer 227 

window, the farther CO2 will be transported. In this way, more observation stations will 228 

sense the flux change of one area, and thus more observations can be used to optimize 229 
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the flux of that place. However, the farther away, the weaker signal the stations can 230 

sense. Limited by the method of EnKF, this weak signal will be masked by the method's 231 

own unphysical signal (spurious correlation). In addition, Zhang et al. (2015) tested 232 

different DA window lengths and found that the longer the window, the larger optimized 233 

terrestrial carbon sink will be, resulting in a smaller optimized annual atmospheric CO2 234 

growth rate as compared to the observed rate. Therefore, they pointed out that the 1-235 

week DA window seems to be most suitable. For this reason, this study also uses the 236 

same DA window of one week as before.  237 

 In the EnKF method, there are inevitably spurious correlations. Therefore, a 238 

localization scale, which determines that only measurements located within a certain 239 

distance (cutoff radius) from a grid point will influence the analysis of this grid, must 240 

be set to reduce the effect of spurious correlations. The localization technique in this 241 

study is based on both the distance between one site and one grid cell of λ, and the 242 

linear correlation coefficient between the simulated concentrations and the perturbed 243 

fluxes for each parameter (λ)/observation pair. If the distance is less than 500 km and 244 

the correlation coefficient is greater than zero, the observations will be accepted for 245 

assimilation, and if the distance is greater than/equal to 500 km and less than 3000 km 246 

and the relationship between a parameter deviation and its modeled observational 247 

impact is statistically significant (p<0.05), then that relationship is retained. Otherwise, 248 

the relationship is assumed to be spurious noise. The scale of 3000 km is set simply 249 

according to the globally-averaged 80-m wind speed during the day (4.96 m/s, Archer 250 

and Jacobson, 2005) and the length of DA window (1 week). 251 

2.2 Prior carbon fluxes 252 

 As described in Section 2.1, there are 4 types of prior carbon fluxes in GCASv2. 253 

In this study, FOSSIL carbon emissions are obtained from NOAA's CarbonTracker, 254 

version CT2017 (Peters et al. 2007, with updates documented at 255 

http://carbontracker.noaa.gov), which is an average of the Carbon Dioxide Information 256 

Analysis Center (CDIAC) product (Andres et al., 2011) and the Open-source Data 257 

Inventory of Anthropogenic CO2 (ODIAC) emission product (Oda and Maksyutov, 258 
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2011). The FIRE CO2 emissions are also taken from CT2017, which are the average of 259 

the Global Fire Emissions Database version 4.1 (GFEDv4) (van der Werf et al., 2010; 260 

Giglio et al., 2013) and the Global Fire Emission Database from the NASA Carbon 261 

Monitoring System (GFED_CMS). The OCN CO2 exchange is from the pCO2-Clim 262 

prior of CT2017, which is derived from the Takahashi et al. (2009) climatology of 263 

seawater pCO2. In addition, as shown in Figure 7 of the CarbonTracker Documentation 264 

CT2017 release (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2017/, 265 

accessed on 4 Mar, 2020), there are no data in many seas like Japan Sea, Mediterranean, 266 

Gulf of Mexico, East China Sea, and so on, and therefore, the fluxes in 2009 modeled 267 

using the global ocean circulation (OPA) and the biogeochemistry model (PISCES–T) 268 

(Buitenhuis et al., 2006; Jiang et al., 2013) is used to fill the no data areas. 269 

The BIO carbon flux, which is the most important prior carbon flux in an 270 

assimilation system, was simulated using the Boreal Ecosystems Productivity 271 

Simulator (BEPS) model (Chen et al., 1999; Ju et al., 2006) in this study. BEPS is a 272 

process-based, remote sensing data driven, and mechanistic ecosystem model. In this 273 

study, BEPS model was run starting from 2000. To simplify the initialization, the initial 274 

values of the different carbon pools are from a previous BEPS simulation (Chen et al., 275 

2019). In short, all carbon pools were assumed to be in a state of dynamic equilibrium 276 

from 1901 to 1910. And all carbon pools were determined by solving a set of equations 277 

describing the dynamics of carbon pools (Chen et al., 2003). Then the simulation 278 

forwarded using historical data. Due to the lack of historical data of remote sensed LAI 279 

data, the averaged LAI from 1982 to 1986 represented that over the 1901-1981 period. 280 

Then, all our initial carbon pools were set to states of carbon pools in 2000 according 281 

to Chen et al. (2019). The BEPS model was also driven by the 1°×1° ERA-Interim 282 

reanalysis datasets, including relative humidity, wind speed, air temperature, incoming 283 

solar radiation, and total precipitation. The other data include LAI data and clumping 284 

index. LAI was inverted from surface reflectance datasets of Moderate Resolution 285 

Imaging Spectroradiometer (MODIS) (Liu et al., 2012), and the clumping index was 286 

derived from the MODIS Bidirectional Reflectance Distribution Function (BRDF) 287 
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products, which provided the finest pseudo multi-angular data for the land surface, 288 

according to Normalized Difference between Hotspot and Darkspot (NDHD) (Chen et 289 

al., 2005, He et al., 2012).  290 

2.3 GOSAT XCO2 retrievals 291 

 The GOSAT XCO2 retrievals of the ACOS Version 7.3 Level 2 Lite product 292 

(O’Dell et al., 2012; Crisp et al., 2012) at the pixel level during May 2009 ~ Dec 2015 293 

is used in this study, which is bias-corrected (Wunch et al., 2011). In order to achieve 294 

the most extensive spatial coverage with the assurance of using best quality data 295 

available, before being used in the inversion system, the XCO2 retrievals are filtered 296 

with two parameters of warn_levels and xco2_quality_flag, which are provided along 297 

with the product. Only the data with xco2_quality_flag greater than 0 are selected. The 298 

selected data are then divided into three groups according the value of warn_levels, that 299 

are with warn_levels less than 8, greater than 9 and less than 12, and greater than 13, 300 

respectively. The group with smallest warn_levels has the best data quality, while that 301 

with the largest is the worst. Then, the pixel data are averaged within the grid cell of 302 

1°×1°, and in each grid, only the group with best data quality is selected and then 303 

averaged. The other variables like column-averaging kernel, retrieval error and so on 304 

which are provided along with the XCO2 product are also dealt with the same method. 305 

This process is the same as Wang et al. (2019).  306 

For the modeled XCO2, the simulated CO2 concentration profile should be first 307 

mapped into the satellite retrieval levels and then vertically integrated according to the 308 

following equation. 309 

𝑋𝐶𝑂2
𝑚 = 𝑋𝐶𝑂2

𝑎 + ∑ ℎ𝑗𝑎𝑗(𝐴(𝑥) − 𝑦𝑎,𝑗)𝑗                    (10) 310 

where j denotes the retrieval level; x is the simulated CO2 profile, and A(x) is a mapping 311 

matrix; XCO2
a is the prior XCO2; hj is a pressure weighting function, aj and ya are the 312 

satellite column averaging kernel and the prior CO2 profile for retrieval, respectively. 313 

Except the simulated CO2 profile, the other quantities are provided along with the 314 

ACOS product and filtered and averaged to 1°×1° grid according to the above method. 315 
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2.4 Evaluation data and method 316 

 Generally, direct validation of the optimized flux is impossible, and instead, we 317 

indirectly evaluate the posterior flux by comparing the forward simulated atmospheric 318 

CO2 mixing ratios against measurements (e.g., Jin et al., 2018; Wang et al., 2019; Feng 319 

et al., 2020). First, the simulated XCO2 are compared against the corresponding GOSAT 320 

XCO2 retrievals to test the effectiveness of the assimilation system (see Section 2.3 for 321 

the description of the GOSAT XCO2 retrieval). Second, Surface CO2 observations used 322 

for independent evaluations in this study are obtained from the 323 

obspack_co2_1_GLOBALVIEWplus_v5.0_2019-08-12 product. It is a subset of the 324 

Observation Package (ObsPack) Data Product (ObsPack, 2019), and contains a 325 

collection of discrete and quasi-continuous measurements at surface, tower and ship 326 

sites contributed by national and universities laboratories around the world. In this study, 327 

surface CO2 measurements from 52 flask sites are selected to evaluate the posterior CO2 328 

concentrations, which are all provided by the NOAA Global Monitoring Laboratory 329 

(with lab number of 1 in each filename). The locations of the 52 sites could be found in 330 

Figure 2 and the corresponding sites code as well as the information latitude and 331 

longitude are listed in Table S3 in the Supporting Information. 332 

During the evaluation, 3 basic statistical measures, namely mean bias (BIAS), root 333 

mean square error (RMSE), and correlation coefficient (CORR), are calculated against 334 

the surface CO2 observations and GOSAT XCO2 retrievals, respectively. The BIAS, 335 

RMSE, and CORR reflect the overall model tendency, both the model bias and error 336 

variance, and the linear correspondence between the modeled and observational 337 

values/retrievals, respectively. The functions of these 3 basic statistical measures are 338 

expressed as:  339 

𝐵𝐼𝐴𝑆 =
1

𝑀
∑ (𝑥𝑗 − 𝑦𝑗) = 𝑦̅ − 𝑥̅𝑀
𝑗=1              (10) 340 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑥𝑗 − 𝑦𝑗)

2𝑀
𝑗=1              (11) 341 
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𝐶𝑂𝑅𝑅 =
∑ (𝑥𝑗−𝑥̅)(𝑦𝑗−𝑦̅)
𝑀
𝑗=1

√∑ (𝑥𝑗−𝑥̅)
2𝑀

𝑗=1 √∑ (𝑦𝑗−𝑦̅)
2𝑀

𝑗=1

             (12) 342 

where 𝑥𝑗  and 𝑦𝑗  denote the modeled and the observational values/retrievals, 343 

respectively, at the jth out of M records, and the overbars denote averages.  344 

 345 

Figure 2. Distributions of the observation sites used in this study. Red solid circles are 346 

the 52 surface flask sites used for evaluations, the shaded shows the 11 TRANSCOM 347 

regions, the blue rectangle shows the Amazon region, which is defined the same as 348 

Botta et al. (2012) 349 

3. Experimental Design 350 

 The assimilation system was run from May 1, 2009 to Dec 31, 2015. Two forward 351 

simulations with the prior and posterior fluxes were also conducted from May 1, 2009 352 

to Dec 31, 2015, respectively. For both assimilation and forward runs, the initial field 353 

of 3-D CO2 concentrations at 00:00 UTC May 1, 2009 was from the product of CT2017 354 

as well, and the MOZART-4 model was run with the resolution of 2.8°×2.8°. The first 355 

8 months are considered as a spin-up run, and the results from Jan 1, 2010 to Dec 31, 356 

2015 are analyzed and evaluated in this study.  357 

During the assimilation, the resolution of λ is the same as the transport model. The 358 
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BIO CO2 exchanges and OCN fluxes are optimized in this study, and the FOSSIL and 359 

FIRE carbon emissions are kept intact. Following Wang et al., (2019), global annual 360 

uncertainties of 100% and 40% are assigned to BIO and OCN CO2 exchanges, 361 

respectively. Accordingly, the uncertainties of the scaling factor (𝜆) for the prior BIO 362 

and OCN fluxes in each DA window at the grid cell level are assigned to 3 and 5, 363 

respectively. The model-data mismatch error of XCO2 is constructed using the GOSAT 364 

retrieval error, which is provided along with the ACOS product. According to the 365 

previous works of Wang et al. (2019) and Deng et al. (2014), all retrieval errors are also 366 

uniformly inflated by a factor of 1.9 in this study, which is the same as Wang et al. 367 

(2019), but a lowest error is added in this study, which is fixed as 1 ppm. 368 

4. Results and Discussions 369 

4.1 Evaluation for the inversion results 370 

4.1.1 Evaluation using Assimilated GOSAT XCO2 retrievals 371 

 Figure 3a shows the zonal mean XCO2 model-data mismatch errors at different 372 

latitudes during the study period. Compared with the GOSAT XCO2 retrievals, basically 373 

all the zonal mean BIAS of the prior XCO2 in different latitudes are greater than 1 ppm, 374 

with a global mean of 1.8±1.3 ppm (average ± standard deviation, same thereafter), but 375 

for the posterior XCO2, most zonal average BIAS are within ±0.5 ppm, with global 376 

mean of -0.0±1.1 ppm. The global mean RMSE between the simulated and GOSAT 377 

retrieved XCO2 concentrations also decreases from a prior value of 2.2 ppm to 1.1 ppm 378 

(Table 1), indicating that the model-data mismatch errors between the simulated and 379 

retrieved XCO2 are significantly reduced. Overall, for both prior and posterior 380 

concentrations, the BIAS in the southern hemisphere is smaller than that in the northern 381 

hemisphere. In the same hemisphere, the BIAS at low latitudes is smaller than that at 382 

high latitudes. Figure 4 shows the spatial distribution of the posterior XCO2 biases. It 383 

could be found that in most grids (~80%), the biases are within ±1ppm. In Tropical 384 

Pacific, North Pacific, North Atlantic and Tropical Land, most biases are positive, and 385 
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in the northern extra-tropical lands, negative biases are dominant. This pattern may be 386 

related to the retrieval errors, and the large BIAS in the high latitudes may be attributed 387 

to the large retrieval errors in those areas, which are caused by the lower solar elevation 388 

angle. Overall, this small posterior BIAS, which is less than the retrieval error (Crisp et 389 

al., 2012), indicates that the GCAS system works well with the GOSAT XCO2 retrievals 390 

in this study. 391 

 392 

Figure 3. Biases at different latitudes (a, simulated and retrieved XCO2; b, simulated 393 

and observed CO2 mixing ratios; error bar represents the standard deviations of the 394 

biases at each latitude and each site, respectively) 395 

 396 

Table1. Statistics of the simulated surface CO2 and XCO2 concentrations against the 397 

surface flask observations and GOSAT retrievals, respectively 398 

  
BIAS (ppm)*   RMSE (ppm)   CORR 

Prior Posterior Prior Posterior   Prior Posterior 

XCO2 1.8±1.3 -0.0±1.1  2.2 1.1  0.95 0.96 

Surface CO2 1.6±1.8 -0.5±1.8  2.4 1.9  0.96 0.96 

*mean ± standard deviation 399 

 400 
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 401 

Figure 4. Distributions of the mean biases of the posterior (cycle) surface CO2 and 402 

(grid shaded) XCO2 concentrations (simulations minus observations/retrievals) 403 

4.1.2 Evaluation using independent surface observations 404 

Figure 3b shows the mean biases of the simulated surface CO2 mixing ratios at each 405 

flask site at different latitudes. It could be found that the BIAS of the prior CO2 mixing 406 

ratios are basically greater than 1 ppm at different latitudes, with global mean of 1.6±1.8 407 

ppm, after constraining using the GOSAT XCO2 retrievals, the BIAS at most sites are 408 

within ±1 ppm, with a global mean of -0.5±1.8 ppm. These BIAS are similar to those 409 

of Basu et al. (2013), in which the average model–observation bias decreased from a 410 

prior value of 1.95 ppm to -0.55 ppm. In our study, the RMSE between the simulated 411 

and surface flask concentrations are also reduced in most sites, with the global mean 412 

RMSE decreasing from 2.4 to 1.9 ppm (Table 1). The BIAS in the northern hemisphere 413 

are significantly larger than those in southern hemisphere, because the carbon flux in 414 

the northern hemisphere is more complex than that of the southern hemisphere (Wang 415 

et al., 2019). In addition, the posterior BIAS in most sites are negative, especially in the 416 

middle latitudes in the northern hemisphere. The significant negative biases (less than 417 

1 ppm) are mainly distributed in North America, Europe, central Asia, while positive 418 
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biases are mainly located along east Asian coast (Figure 4), indicating that the carbon 419 

sinks in North America and Europe might be overestimated in this study, while those in 420 

the upwind areas of east Asian coastal sites, mainly eastern China, may be 421 

underestimated.  422 

Moreover, it also could be found that the global mean prior BIAS of XCO2 (about 423 

1.82 ppm) is greater than the surface concentrations (1.60 ppm), while the BIAS of 424 

XCO2 reduced by inversion (about 1.8 ppm) is less than the reduction of BIAS in the 425 

surface concentrations (about 2.1 ppm). This may be attributed to the fact that, on the 426 

one hand, although the GOSAT XCO2 retrievals were bias-corrected, there may still be 427 

some systematic deviations; on the other hand, the responses of surface observations to 428 

changes in the surface carbon flux is faster than the XCO2 concentrations, so that larger 429 

flux adjustments are needed to match XCO2 concentration with ground data. A similar 430 

situation was reported in Wang et al. (2019). In their study, GOSAT XCO2 retrievals 431 

were used to optimize the terrestrial carbon flux in 2015. Their inversion reduced the 432 

BIAS of simulated surface and XCO2 (compared against TCCON sites) concentrations 433 

by about 1.1 and 0.9 ppm, respectively. 434 

Figure 5 shows the time series of simulated and observed CO2 mixing ratios at four 435 

sites, i.e., mlo, nwr, tik, and nat. The mlo and nwr sites are two mountain stations located 436 

in the center of Pacific and western US, respectively, and nat and tik are two coastal 437 

sites located in Amazon and Siberia, respectively (Figure 2). Overall, the posterior 438 

mixing ratios have a better agreement with the observations at all 4 sites. The mlo site 439 

is an atmospheric baseline station. At mlo, the posterior mixing ratio well reproduces 440 

the observed concentration, while the prior concentrations are overestimated all the 441 

time since the summer of 2010, especially during the summertime every year. Besides, 442 

the posterior concentrations during the wintertime are underestimated, and the 443 

underestimation gradually increases along with time. A similar situation also could be 444 

found at the nat site as well as other sites located in tropical and southern hemisphere 445 

oceans (Figure not shown). Figure S1 shows the interannual variations of the global 446 

mean BIAS. Clearly, the biases of surface CO2 are gradually accumulated, leading to 447 
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the relatively large mean bias (-0.5 ppm). If we remove the impact of accumulation, the 448 

annual bias is about -0.1 ppm per year (about -0.2 PgC yr-1). There are no error 449 

accumulations at most land sites like nwr and tik. These indicate that the global net 450 

carbon sinks are slightly overestimated every year, but in different lands, there are 451 

interannual variations.  452 

 453 

Figure 5. Modeled and observed CO2 time series at four surface stations 454 

4.2 Global Carbon Budget 455 

Table 2 presents the mean prior and posterior global carbon budgets during 2010 ~ 456 

2015 of this study. For comparison, the mean global carbon budgets from Global 457 

Carbon Budget 2018 (GCP2018, Le Quéré et al., 2018), CT2017, and Jena CarboScope 458 

(JCS, Rödenbeck, 2005) are also shown. Both CT2017 and JCS estimates of the 459 

surface-atmosphere CO2 exchange were based on the atmospheric measurements of 460 

CO2 concentrations. In this study, the JCS product of s04oc_v4.3 is adopted. It should 461 

to be noted that JCS only provides the land-atmosphere carbon flux, which is the sum 462 
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of BIO carbon flux and FIRE carbon emissions, and no individual FIRE carbon 463 

emissions data is available. To compare, the FIRE carbon emissions used in this study, 464 

which is from CT2017, is also applied to the JCS data, namely the BIO carbon flux of 465 

JCS in this manuscript is obtained from the land-atmosphere carbon flux of JCS minus 466 

the FIRE carbon emission of this study. 467 

Table 2. Mean global carbon budgets during 2010 ~2015 estimated in this study as well 468 

as those from the prior fluxes, GCP2018, CT2017 and JCS (PgC yr-1) 469 

 Prior Posterior GCP2018 CT2017 JCS 

Fossil fuel and industry 

(FOSSIL) 
9.58  9.58  9.49  9.62  9.31  

Biomass burning (FIRE) 2.02  2.02  1.52*  2.03  2.02 

Terrestrial ecosystem (BIO) -4.07  -4.24  -3.13  -4.29  -4.07 

Ocean (OCN) -2.47  -2.56  -2.46  -2.57  -2.25  

Budget imbalance - - -0.52  - - 

Net biosphere exchange*** -2.05  -2.22  -2.12  -2.27  -2.05  

Global net carbon flux (AGR) 5.06  4.80  4.91**  4.79  5.01  

* land-use change emissions, **atmospheric growth in GCP2018, *** for GCP2018, it 470 

is the sum of BIO, FIRE and budget imbalance, and for the others, it is the sum of BIO 471 

flux and FIRE emission. 472 

The mean posterior BIO carbon flux during 2010-2015 in this study is -4.24 PgC 473 

yr-1 (negative/positive mean carbon uptake/release from/to the atmosphere, same 474 

thereafter), and the OCN flux is -2.56 PgC yr-1, after considering the FOSSIL carbon 475 

emission (9.58 PgC yr-1) and FIRE carbon emission (2.02 PgC yr-1), the mean global 476 

net carbon flux (i.e., atmospheric CO2 growth rate) inverted in this study is 4.80 PgC 477 

yr-1. Both the posterior BIO and OCN carbon fluxes are stronger than the prior ones, 478 

and the posterior global net carbon flux is weaker than the prior one. Compared with 479 

the others, both posterior BIO and OCN fluxes are close to the ones of CT2017, but 480 

higher than the ones of JCS. The atmospheric CO2 growth rate (AGR) of GCP2018 was 481 

estimated directly from atmospheric CO2 measurements, which were provided by the 482 

US National Oceanic and Atmospheric Administration Earth System Research 483 

Laboratory (NOAA/ESRL) (Dlugokencky and Tans, 2018), and therefore, it could be 484 

considered as a true value. The posterior AGR in this study (4.8 PgC yr-1) is slightly 485 
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lower than GCP2018 and very close to CT2017. Compared with GCP2018, the 486 

deviations of prior and JCS AGR are 0.15 and 0.10 PgC yr-1, while the ones of posterior 487 

and CT2017 are -0.11 and -0.12 PgC yr-1, respectively. 488 

4.3 Regional Carbon Flux 489 

Figure 6 shows the distributions of the mean prior and posterior annual BIO and 490 

OCN carbon fluxes as well as their differences during 2010 - 2015. For the prior BIO 491 

flux, carbon uptakes mainly occur over eastern North America, Amazon, southern 492 

Brazil, western Europe, southern Russia, eastern China, South Asia and Malay 493 

Archipelago; and carbon releases mainly occur in western North America, eastern 494 

Amazon, Argentina, most Africa, Indo-China Peninsula, and parts of eastern Europe 495 

and Russia. For the prior OCN flux, carbon uptakes mainly happen in mid-latitude 496 

regions in both hemispheres, while carbon sources are mainly in tropical oceans and 497 

Southern Ocean. After the constraint with the GOSAT XCO2 retrievals, the overall 498 

patterns of carbon sinks and sources are similar to the prior ones. However, the BIO 499 

sinks in East and Central America, eastern Amazon, tropical Africa, Indo-China 500 

Peninsula, and southwestern Russia are obviously increased, on the contrary, in western 501 

North America, temperate South America, extra-tropical Africa, South Asia, Southwest 502 

China, North China, Siberia, and parts of southern and northern Europe, the carbon 503 

sources are increased. For the OCN flux, in most tropical and northern hemisphere 504 

oceans, the carbon sinks are slightly increased, while in most southern hemisphere 505 

oceans, the carbon sources are slightly enhanced. 506 
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 507 

Figure 6. Distributions of mean annual terrestrial ecosystem and ocean carbon fluxes 508 

a) prior and b) posterior and c) their differences (posterior - prior) (gC m-2yr-1) 509 

Table 3 lists the aggregated mean annual prior and posterior BIO carbon fluxes 510 

during 2010-2015 for the 11 TRANSCOM land regions (Figure 2, Gurney et al., 2002) 511 

as well as 3 aggregated large-scale regions, i.e., Northern Lands, Tropical Lands, and 512 

Southern Lands. Northern lands include Boreal North America, Temperate North 513 

America, Boreal Asia, Temperate Asia and Europe; Tropical Lands include Tropical 514 

(a)

(b)

(c)
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South America, Tropical Asia, Northern Africa and Southern Africa; and Southern 515 

Lands include Temperate South America and Australia. For the prior, there is a largest 516 

carbon sink in Tropical South America, followed by Boreal Asia and Temperate Asia, 517 

and a weakest carbon flux in Southern Africa. After optimization using GOSAT XCO2 518 

retrievals, the carbon sinks of Temperate North America, Southern Africa are 519 

significantly increased, and those in Australia and Europe are also enhanced. However, 520 

in Temperate South America, Northern Africa, Boreal Asia, and Temperate Asia, the 521 

carbon sinks are decreased. Very small changes are found in Boreal North America, 522 

Tropical South America, and Tropical Asia, especially for Tropical South America, 523 

however, as shown in Figure 6, there are obvious changes over different areas in 524 

Tropical South America, thus the zero change in statistics in this region may be just a 525 

coincidence. For the Amazon region (Figure 2), the estimated BIO flux is decreased 526 

from a prior of -0.52 PgC yr-1 to -0.45 PgC yr-1. The largest carbon sink occurs in 527 

Temperate North America, followed by Tropical South America and Europe, and the 528 

weakest sink appears in Northern Africa. 529 

For comparisons, Table 3 also lists the mean BIO carbon fluxes of CT2017 and 530 

JCS for the same period. For the 3 large-scale regions, i.e., Northern Lands, Tropical 531 

Lands and Southern Lands, the same as the global total BIO carbon sink, the carbon 532 

sinks in these 3 regions are also similar to CT2017. However, in each region, the 533 

distributions of carbon sinks between this study and CT2017 are significantly different. 534 

In Northern Lands, the carbon sinks estimated by this study are more evenly distributed, 535 

although Temperate North America has the largest carbon sink, and those in Boreal Asia, 536 

Temperate Asia and Europe are also very strong and comparable. However, in CT2017, 537 

the carbon sinks are mainly distributed in Boreal Asia and Temperate Asia, accounting 538 

for more than 70% of the total sink in Northern Lands. The sinks in Temperate North 539 

America and Europe are very weak or even neutral. In Tropical Lands, this study shows 540 

strong carbon sinks in Tropical South America and Tropical Asia, and a weak sink in 541 

Africa, while CT2017 shows an opposite pattern. In Southern Lands, this study shows 542 

comparable sinks in Temperate South America and Australia, while CT2017 shows a 543 
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strong sink in Temperate South America and very weak one in Australia. Compared 544 

with JCS, except for Temperate North America and Southern Africa, the carbon sinks 545 

are comparable in other regions. Constraining with different observations might be one 546 

of the main reasons among these studies. Many studies have shown differences between 547 

the constraints with in situ observations and XCO2 retrievals (e.g., Wang et al., 2019; 548 

Deng et al., 2014). Besides, these differences may be also related to the different prior 549 

BIO carbon fluxes among these studies, especially for the tropical land. The distribution 550 

of the posterior BIO fluxes in this study and CT2017 are consistent with the 551 

corresponding prior fluxes in the tropical land (Table 3). Using the same GOSAT XCO2 552 

retrievals, Deng et al. (2014) adopted a similar prior flux with this study, which was 553 

also simulated using the BEPS model but globally neutralized, to infer the land fluxes 554 

of 2010, their distributions are roughly consistent with this study, while Wang et al. 555 

(2019) applied the prior flux from CT2016 to optimizing the fluxes in 2015, and they 556 

showed a similar distribution of land sinks over tropical lands to that of CT2017. 557 

Table 3. Regional BIO and FIRE flux in the 11 TRANSCOM land regions (PgC yr-1) 558 

Regions Fire 
This Study   CT2017 

JCS 
Prior Posterior   Prior Posterior 

Boreal North America 0.065 -0.26 -0.28  -0.05 -0.39 -0.31 

Temperate North America  0.022 -0.49 -0.88  -0.14 -0.23 -0.21 

Tropical South America  0.220 -0.66 -0.66  0.02 -0.11 -0.43 

Temperate South America  0.142 -0.3 -0.15  -0.16 -0.42 0.13 

Northern Africa 0.385 -0.18 -0.05  -0.47 -0.82 -0.11 

Southern Africa 0.628 0.01 -0.14  -0.63 -0.55 -0.66 

Boreal Asia  0.097 -0.61 -0.45  -0.18 -0.99 -0.51 

Temperate Asia  0.065 -0.51 -0.42  -0.15 -0.66 -0.69 

Tropical Asia  0.258 -0.45 -0.47  -0.05 -0.07 -0.73 

Australia 0.097 -0.16 -0.23  -0.15 -0.07 -0.08 

Europe 0.015 -0.46 -0.52   -0.18 0 -0.44 

Northern Lands* 0.26 -2.33 -2.55  -0.7 -2.27 -2.16 

Tropical Lands** 1.49 -1.28 -1.32  -1.13 -1.55 -1.93 

Southern Lands*** 0.24 -0.46 -0.38   -0.31 -0.49 0.05 

*Northern lands include Boreal North America, Temperate North America, Boreal Asia, Temperate 559 

Asia and Europe; **Tropical Lands include Tropical South America, Tropical Asia, Northern Africa 560 

and Southern Africa; ***Southern Lands include Temperate South America and Australia. 561 
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Compared with other studies, the land fluxes (including FIRE but excluding 562 

FOSSIL) in South America (-0.45 PgC yr-1), Europe (-0.51 PgC yr-1), Boreal Asia (-563 

0.35 PgC yr-1), Temperate Asia (-0.35 PgC yr-1), Tropical Asia (-0.21 PgC yr-1), and 564 

Australia (-0.13 PgC yr-1) are comparable with the forest sinks in these regions during 565 

2000-2007 estimated using forest inventory data by Pan et al. (2011). However, the land 566 

fluxes in Africa and North America are significantly different from the estimates of Pan 567 

et al. (2011). In North America, based on inventory-based calculations, the Second State 568 

of the Carbon Cycle Report (SOCCR2, Hayes et al., 2018) estimated that the average 569 

annual net land ecosystem flux was -0.96 PgC yr-1, and after considering the outgassing 570 

and wood products emissions, they reported the land-based carbon sink was -0.606 PgC 571 

yr-1 (±75%) during the 2004 to 2013 time period. The land flux estimated in this study 572 

(-1.07 PgC yr-1) is close to the bottom-up estimate of the net land ecosystem flux, but 573 

much stronger than the reported land-based carbon sink of SOCCR2. In Africa, Ciais 574 

et al. (2011) shown a comprehensive estimate for its carbon balance, given a sink of - 575 

0.2 PgC yr−1 (excluding land-use change emissions) based upon observations. Our 576 

estimate of the BIO flux in Africa is very consistent with this result. Moreover, most 577 

recently, Palmer et al. (2019) inferred the carbon fluxes of pan-tropical lands in 2015 578 

and 2016 using both GOSAT and the NASA Orbiting Carbon Observatory (OCO-2) 579 

XCO2 retrievals, and their estimated net carbon emissions from African biosphere 580 

dominate pan-tropical atmospheric CO2 signals are similar to the results of this study. 581 

In Boreal Asia, the land sink estimated by bottom-up approaches was in the range of -582 

0.11 ~ -0.76 PgC yr−1 (Hayes et al., 2011; Nilsson et al., 2003; Dolman et al., 2012; 583 

Zamolodchikov et al., 2017). CarbonTracker usually reports a very stronger carbon sink 584 

(Jacobson et al. 2020; Peter et al., 2007; Zhang et al., 2014), one possible reason is that 585 

there are no enough surface observations in Asia boreal regions. Saeki et al. (2013b) 586 

conducted an inversion with a focus on the Siberia region, and also derived a large sink 587 

of −0.56 ± 0.79 PgC yr−1 only using the NOAA data, but after adding additional 588 

observations in Siberia, they obtained a weaker uptake of −0.35±0.61 PgC yr−1. Our 589 

estimate (-0.35 PgC yr-1) is in the range of bottom-up estimates, and very consistent 590 
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with the Siberia-focused inversion (Saeki et al., 2013b). In Europe, previous GOSAT-591 

based inversions consistently derived a very large European sink, which was in the 592 

range of -0.6 ~ -1.8 PgC yr−1(Basu et al., 2013, Chevallier et al., 2014; Deng et al., 593 

2014), while the ones constrained using surface observations were much weak, in the 594 

range of 0 ~ -0.4 PgC yr-1 (Peters et al., 2007, 2010; Peylin et al., 2013; Scholze et al., 595 

2019). Our estimate of the BIO flux in Europe is smaller than the previous GOSAT-596 

based inversions, and close to the estimate of Pelylin et al. (2013). In the Amazon region, 597 

the posterior land flux is -0.45 PgC yr-1, which is in the range of the previous long-term 598 

forest biomass sink estimates of -0.28 ~ -0.49 PgC yr−1 (Phillips et al., 2009; Brienen et 599 

al., 2015), but larger than the other inversions (e.g., Deng et al., 2016; Gatti et al., 2014). 600 

4.4 Interannual variations 601 

4.4.1 Global land and ocean fluxes 602 

Figure 7 shows the interannual variations of the prior and posterior BIO and OCN 603 

fluxes. Overall, from 2010 to 2015, the prior BIO fluxes show an increasing trend, but 604 

for the posterior fluxes, there is no significant trend. Large differences between the prior 605 

and the posterior fluxes mainly occur in 2010 and 2015. In 2010, the posterior sink is 606 

much stronger than the prior, while in 2015, the posterior sink is much weaker than the 607 

prior. For the OCN flux, both prior and posterior fluxes show consistently upward 608 

trends, and except for 2015, the posterior sinks are basically stronger than the prior ones 609 

every year. For the AGR (Figure 8), the prior sink shows a significant downward trend, 610 

while the posterior one shows a slightly increasing trend. The same as the BIO fluxes, 611 

large differences mainly occur in 2010 and 2015. 612 
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 613 

Figure 7. Interannual variations of global (a) BIO and (b) OCN fluxes of the prior and 614 

posterior as well as GCP2018, CarbonTracker 2017 (CT2017) and Jena CarboScope 615 

(JCS)  616 

 Compared with the other products, the interannual variations of the posterior BIO 617 

fluxes (Figure 7a) are consistent with the inversions of CT2017 and JCS, and the 618 

estimates of GCP2018. For each year, the inversions of this study are all in the range of 619 

CT2017 and JCS, but higher than GCP2018. However, because GCP2018 has the item 620 

of budget imbalance and the land-use change emission is different from the FIRE 621 

emission, the BIO flux in GCP2018 is different from this study, so direct comparison 622 

with GCP2018 is not meaningful. For OCN fluxes, overall, there are no significant 623 

differences among different estimates, and the upward trend of this study is similar to 624 

that of GCP2018, and higher than those of CT2017 and JCS. The interannual variation 625 

of AGR in this study is also very consistent with GCP2018 (Figure 8). Except for 2012 626 

and 2015, the absolute deviations of AGR between this study and GCP2018 are within 627 

0.3 PgC yr-1. 628 
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 629 

Figure 8. Interannual variations of the atmospheric CO2 growth rates 630 

4.4.2 Regional land fluxes 631 

 Figure 9a, b, and c show the prior and posterior interannual variations of the BIO 632 

fluxes in Northern Lands, Tropical Lands and Southern Lands, respectively. In Northern 633 

Lands, the interannual variations of both prior and posterior fluxes are similar to the 634 

corresponding global land totals (Figure 7a), i.e., upward trend for the prior flux and no 635 

trend with the posterior one, indicating that the interannual variations of global BIO 636 

fluxes are dominated by the fluxes in Northern Lands. In Tropical Lands, the 637 

interannual variations of posterior fluxes are similar to the prior ones, however, 638 

compared with the prior sinks in 2010 and 2011, the posterior sinks are much stronger, 639 

while in 2013 and 2015, they are much weaker. In Southern Lands, there are large 640 

differences for the interannual variations between the prior and posterior fluxes. For the 641 

prior flux, the highest sink is in 2011 and the weakest in 2012, and after that, it increases 642 

year by year, while for the posterior flux, the sink decreases from 2010 to 2013, and 643 

then increases. 644 

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

2010 2011 2012 2013 2014 2015

A
tm

o
sp

h
er

ic
 g

ro
w

th
 (

P
g
C

/y
r)

GCP2018 Posterior Prior

https://doi.org/10.5194/acp-2020-421
Preprint. Discussion started: 26 August 2020
c© Author(s) 2020. CC BY 4.0 License.



29 

 

 645 

Figure 9. Prior and posterior interannual variations of the BIO fluxes in (a) Northern 646 

Lands, (b) Tropical Lands, and (c) Southern Lands, respectively, and (d) severe 647 

drought areas of above 3 regions. 648 

Drought is one of the most important factors that affect terrestrial carbon sinks, and 649 

generally, severe drought will significantly reduce carbon sinks (e.g., Ma et al., 2012; 650 

Zhao and Running, 2010; Ciais et al., 2005; Gatti et al., 2014; Phillips et al., 2009; 651 

Vicente-Serrano et al., 2013). Previous studies (e.g., Liu et al., 2018) have used the 652 

GOSAT XCO2 retrievals to infer the impact of droughts on terrestrial ecosystem carbon 653 

uptake anomalies. Figure 9d shows the severe drought areas (SDAs) in the 3 large 654 

regions every year, which were calculated according to the monthly Standardised 655 

Precipitation-Evapotranspiration Index at 12-month time scales (SPEI12) (Beguería et 656 

al., 2010). Here, the database of SPEIbase v2.5 is used, and the severe drought is 657 

defined as SPEI12 less than -1.5 (Paulo et al., 2012). In addition, only the severe 658 

drought that happens in forests, shrubs and crops are counted in this study. It could be 659 

found that the posterior fluxes have better correlations with the SDAs in all 3 regions, 660 

i.e. a larger SDA leads to a weaker carbon sink, and vice versa. The correlation 661 

coefficients between carbon sinks and SDAs in Northern Lands, Tropical Lands and 662 
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Southern Lands increase from prior values of -0.1, -0.25 and -0.44 to -0.53, -0.67 and -663 

0.76, respectively, indicating that the inversion has improved the interannual variations 664 

of BIO fluxes in large scales. In addition, strong El Niño event happened during 665 

2015~2016, and many researches have studied the responses of tropical land carbon 666 

fluxes to this strong El Niño event (e.g., Wang et al., 2018; Liu et al., 2017; Bastos et 667 

al., 2018; Koren et al., 2018). Liu et al. (2017) found that relative to the 2011 La Niña, 668 

the pantropical biosphere released 2.5 ± 0.34 PgC more carbon into the atmosphere in 669 

2015. Bastos et al. (2018) showed a smaller difference of carbon fluxes between 2015 670 

and 2011 using both bottom-up and top-down approaches, which was in the range of 671 

−0.7 ~ −1.9 PgC yr−1. In this study, compared with the prior, our inversion significantly 672 

enhances the difference between 2011 and 2015 (Figure 9b), and shows that 2015 673 

released 1.35 PgC more than 2011 in the pantropical region (defined as Liu et al., 2017), 674 

which is much smaller than Liu et al.’s result, but agree well with the result of Bastos 675 

et al. (2018). 676 

Moreover, Figure 10 shows the prior and posterior interannual variations of the 677 

BIO fluxes on the 11 TRANSCOM land regions. In North America, including 678 

Temperate North America and Boreal North America, the prior fluxes show an upward 679 

trend, while the posterior fluxes show a downward trend. In Boreal Asia and Temperate 680 

Asia, there are significant upward trends for the prior fluxes, but no significant trends 681 

are found in the posterior fluxes. In Temperate South America, although the prior and 682 

posterior fluxes show trends of weakening first and then increasing, the years in which 683 

the carbon sink is weakest are not consistent: the prior flux is weakest in 2012, while 684 

the posterior one is in 2013. Similarly, in northern Africa, the prior and posterior fluxes 685 

show a trend of increasing and then decreasing, but the prior flux is the largest in 2014, 686 

while the posterior one is strongest in 2011. In other regions, i.e., Tropical South 687 

America, Tropical Asia, Southern Africa, Australia and Europe, the trends between the 688 

prior and posterior fluxes are similar, especially in Tropical South America and Tropical 689 

Asia, the prior and posterior fluxes are very close every year. Among them, in Southern 690 

Africa and Australia, the posterior fluxes have more significant interannual variations 691 
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than the prior fluxes, and in Europe, the posterior sink is much weaker in 2015, and 692 

stronger in 2010 and 2013 than the prior one. 693 

The same as above, we also investigate the relationships between the interannual 694 

variations of carbon sinks and SDAs in the 11 TRANSCOM land regions. As shown in 695 

Table 4, in Temperate South America, Boreal Asia, and Europe, the posterior sinks have 696 

a better correlation with the SDAs than the prior sinks, especially in Europe, the 697 

correlation coefficient increases from a prior value of -0.33 to -0.85. However, in other 698 

regions, there is no obvious improvement, and in some regions, the relationships are 699 

even getting worse, such as Boreal North America, Temperate North America, Northern 700 

Africa and Southern Africa. One possible reason is that there are usually higher annual 701 

mean temperatures in drought years, which might extend the growing season of 702 

vegetation, thereby enhance the carbon uptake and offset the impacts of drought. A 703 

previous study (Wolf et al., 2016) showed that in 2012, Temperate North America 704 

experienced an extreme summer drought event, and along with the warmest spring on 705 

record. They quantified the impact of this climate anomaly on the carbon cycle and 706 

concluded that the warm spring largely increased spring carbon uptake, and thus 707 

compensated for reduced carbon uptake induced by the summer drought. Liu et al. 708 

(2018) reported that because of the compensating effect of the carbon flux anomalies 709 

between northern and southern US in 2011 and between spring and summer in 2012, 710 

the annual carbon uptake decreased by 0.10±0.16 PgC in 2011, and increased by 711 

0.10±0.16 GtC in 2012 over US compared with the averaged state. In this study, 712 

compared with the mean flux during 2010-2015, the carbon sink in Temperate North 713 

America decreased by 0.09 PgC yr-1 in 2011, and increased by 0.14 PgC yr-1 in 2012, 714 

which is very close to the result of Liu et al. (2018). In Australia, both the prior and 715 

posterior fluxes have very good relationships with the SDAs. The significantly 716 

enhanced carbon uptake during 2010-2012 is consistent with the finding in Detmers et 717 

al. (2015), who inferred an even stronger carbon sink of -0.77±0.10 PgC yr−1 from the 718 

end of 2010 to early 2012 using the GOSAT XCO2 product, and they confirmed that 719 

this enhanced sink is related to the strong La Niña episode, which brought a record-720 
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breaking amount of precipitation, resulting in an enhanced growth of vegetation. In 721 

Tropical South America, the impacts of the 2010 drought on the carbon uptake over 722 

Amazon have been extensively studied (e.g., Doughty et al., 2015; Gatti et al., 2014; 723 

van der Laan-Luijkx et al., 2015). 2010 is a drought year, while 2011 is a wet year in 724 

the Amazon region, compared to 2011, Gatti et al. (2014) estimated the no-fire carbon 725 

exchange was reduced by 0.22 PgC yr-1, van der Laan-Luijkx et al. (2015) derived a 726 

decrease of biospheric uptake ranging from 0.08 to 0.26 PgC yr-1, and Doughty et al. 727 

(2015) concluded that drought suppressed Amazon-wide photosynthesis by 0.23–0.53 728 

PgC yr-1. In this study, our inversion reduces the difference of carbon uptake between 729 

2010 and 2011 from a prior of 0.62 PgC yr-1 to 0.28 PgC yr-1, which is much more 730 

consistent with the previous estimates. 731 

Carbon uptake occurs mainly through photosynthesis of vegetation leaves. Leaf 732 

area index (LAI) is a measure of leaf area per unit area. Buchmann and Schulze (1999) 733 

shown that there are strong relationships between the interannual changes of carbon 734 

uptake and LAI in grasslands, C4 crops, and coniferous forests, but no significant 735 

relationship in broad-leaved forests; Chen et al. (2019) also showed that from 1981 to 736 

2016, the increase in LAI contributed significantly to the increase in global BIO carbon 737 

sinks. Therefore, we further investigate the relationships between the interannual 738 

changes of carbon sinks and LAIs in the 11 TRANSCOM regions (Table 4). Here, the 739 

LAI data are from the GIMMS LAI3g product, which has a spatial resolution of 1/12 740 

degree and a time interval of 15 days (Zhu et al., 2013). As shown in Table 4, in Boreal 741 

North America, Temperate North America, Northern Africa and Southern Africa, 742 

compared with the prior fluxes, there are better relationships between the posterior 743 

carbon sinks and LAIs, the correlation coefficients increase from prior values of -0.4, 744 

0.31 and 0.35 to 0.62, 0.73 and 0.90 respectively, suggesting that the inversion of this 745 

study may also improve the interannual variations of carbon sinks in these 4 regions at 746 

a certain extent.  747 
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 748 

Figure 10. Prior and posterior interannual variations of the BIO fluxes on (a) Boreal 749 

North America, (b) Temperate North America, (c) Tropical South America, (d) 750 

Temperate South America, (e) Northern Africa, (f) Southern Africa, (g) Boreal Asia, 751 

(h) Temperate Asia, (i) Tropical Asia, (j) Australia, and (k) Europe 752 

 753 

Table 4. Correlation coefficients of severe drought areas (SDAs) and regional mean 754 

LAI with the BIO sinks in each region 755 

Regions 
SDA   LAI 

Prior Posterior   Prior Posterior 

Boreal North America  -0.29 0.36  -0.4 0.62 

Temperate North America  -0.54 -0.27  0.31 0.73 

Tropical South America  -0.1 -0.2  0.64 0.49 

Temperate South America  -0.41 -0.74  0.72 0.24 

Northern Africa 0.51 0.2  0.81 0.89 

Southern Africa -0.53 0.41  0.35 0.9 

Boreal Asia  -0.17 -0.35  0.49 0.1 

Temperate Asia  0.33 0.33  0.55 0.38 

Tropical Asia  -0.03 0.16  0.69 0.71 

Australia -0.85 -0.73  0.88 0.83 

Europe -0.33 -0.85   0.85 0.58 

 756 
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5. Summary and Conclusions 758 

In this study, we upgrade the GCAS system to GCASv2 with new assimilation 759 

algorithms, procedures and a localization scheme, a higher assimilation parameter 760 

resolution, and the ability to assimilate XCO2 retrievals. Then, we use the GOSAT 761 

XCO2 retrievals to constrain terrestrial ecosystem and ocean carbon fluxes from May 762 

1, 2009 to Dec 31, 2015, using the GCASv2 system. We compare the simulated prior 763 

and posterior XCO2 against the corresponding GOSAT XCO2 retrievals to test the 764 

effectiveness of the assimilation system and evaluate the posterior carbon fluxes by 765 

comparing the posterior CO2 mixing ratios against observations from 52 surface flask 766 

sites. The distribution and interannual variations of the posterior carbon fluxes at both 767 

global and regional scales from 2010 to 2015 are shown and discussed.  768 

Compared with the GOSAT XCO2 retrievals, the global mean BIAS and RMSE 769 

decrease from prior values of 1.8±1.3 and 2.2 ppm to -0.0±1.1 and 1.1 ppm, respectively, 770 

indicating that the GCASv2 system works well with the GOSAT XCO2 retrievals. 771 

Independent evaluations using surface flask CO2 concentrations showed that the 772 

posterior carbon fluxes could significantly improve the modeling of atmospheric CO2 773 

concentrations, with the global mean BIAS and RMSE decreasing from prior values of 774 

1.6±1.8 and 2.4 ppm to -0.5±1.8 and 1.9 ppm, respectively. The large negative biases 775 

are mainly distributed in North America, Europe, indicating the overestimates of carbon 776 

sinks over these areas. Evaluations also show that the biases gradually increase along 777 

with the time in most tropical and southern hemisphere ocean sites, but no accumulation 778 

is found at most land sites, indicating that globally, the carbon sinks may be 779 

overestimated every year, but in different lands, the deviations of the estimates may 780 

differ each year. 781 

Globally, the mean annual BIO carbon sink and the interannual variations 782 

inferred in this study are very close to the estimates of CT2017 during the study period, 783 

and the estimated mean AGR and interannual changes are also very close to the 784 

observations, with mean annual bias of -0.11 PgC yr-1. Regionally, the inversion shows 785 
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that in the northern lands, the carbon sink of Temperate North America is the strongest, 786 

and those in Boreal Asia, Temperate Asia and Europe are also very strong and 787 

comparable; in the tropics, there are strong sinks in Tropical South America and 788 

Tropical Asia, but a very weak sink in Africa. These distributions are significantly 789 

different from the estimates of CT2017, probably due to the different prior fluxes and 790 

CO2 observations used for inversion. However, our estimates in most regions or 791 

continents are comparable or in the range of previous bottom-up estimates. The 792 

inversion also changed the interannual variations of carbon sinks in most TRANSCOM 793 

and hemisphere scale land regions, leading to their better relationship with the 794 

variations of severe drought or LAI, indicating that the inversion with GOSAT XCO2 795 

retrievals may help to better understand the interannual variations of regional carbon 796 

fluxes. 797 
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